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Dynamical properties of the hypercell spin-glass model
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~Received 21 May 1997; revised manuscript received 28 October 1997!

The spreading of damage technique is used to study the dynamical phase diagram of the spin-glass hyper-
cubic cell model in a heat bath Monte Carlo simulation. Since the hypercubic cell in dimension 2D and the
hypercubic lattice in dimensionD resemble each other closely at finite dimensions and both converge to a
mean field when dimension goes to infinity, we can study the effects of dimensionality on the dynamical
behavior of spin glasses.@S1063-651X~98!11302-8#

PACS number~s!: 05.50.1q, 75.50.Lk, 71.55.Jv
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I. INTRODUCTION

The spin-glass theory has been one of the most diffi
problems treated by statistical mechanics during the past
decades. Despite its value in the field of solid-state phys
its study has also contributed to develop techniques that
apply to a wide range of fields such as optimization pro
lems, neural networks, and other complex systems@1#.

The microscopic approach to spin glasses is attribute
Edwards and Anderson@2#, whose model basically consis
of an Ising system with random positive and negative
change couplings. Until now only its mean-field versio
known as the Sherrington-Kirkpatrick~SK! model @3# has
been exactly solved, but unfortunately its solution requi
the sophisticated replica trick. Under such limitations, Mo
Carlo numerical simulations have become one of the m
applied techniques in the field. At the same time, it is n
clear at the moment whether one should expect that the s
glass phase of the mean-field SK model resembles the
havior of the spin-glass phase of the low-dimens
Edwards-Anderson~EA! model.

For many years there has been great controversy
whether the spin-glass transition is either of thermodyna
cal or dynamical nature. However, numerical simulations@4#
and phenomenological scaling arguments at zero tempera
@5# strongly suggest the existence of a true thermodynam
phase transition. From a dynamical point of view, a ve
careful numerical study of the time decay of the autocor
lation functionq(t) has shown that the system displays thr
different dynamical regimes: Above the Curie pointTC of
the nonrandom Ising model, the autocorrelation decays
ponentially; betweenTC and the spin-glass temperatureTg
the autocorrelation function has a stretched exponential
havior with temperature-dependent exponents; and finally
the spin-glass phase only power-law decay is observed a
times scales.

Since the SK model can be understood as the infin
dimensional version of the EA model, it is desirable to
able to study the effects of dimensionality on both the sta
and dynamical properties of the system, even if such
analysis should be limited to numerical considerations.

*Electronic address: pgleiser@fis.uncor.edu
†Electronic address: tamarit@fis.uncor.edu
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1991 Parisi, Ritort, and Rubı´ @6# introduced thehypercubic
cell model, which allows a very efficient treatment of high
dimensional models, at least when compared to hypercu
lattice models. It consists of a unique cubic cell of dimens
D with an Ising spin variable associated with each of itsD

corners. Despite its simplicity, one expects that its behav
for dimension 2D resembles, at least qualitatively, that o
served in aD-dimensional hypercubic lattice since bo
share the same connectivityD. Furthermore, forD→` the
hypercell model recovers the mean-field SK model.

This approach has been used in the past few year
analyze both dynamical and statical consequences of dim
sionality in the spin-glass phase of different models@6–9#. In
this work we apply the damage spreading method to
hypercell Ising spin-glass model simulated with a heat b
Monte Carlo dynamics. This technique basically consists
measuring the time evolution of the Hamming distance
tween two initially different configurations submitted to th
same thermal noise, i.e., updated with the same random n
ber sequence. The dependence of the damage and oth
lated quantities on temperature, time, initial conditions, a
other relevant parameters leads to a dynamical phase
gram of the model.

In general, this phase diagram strongly depends on
Monte Carlo dynamics used in the numerical simulation.
particular, for the two- and three-dimensional Ising ferr
magnet one finds that the dynamical transition coincides w
the static one when the system is submitted to heat b
dynamics, while the opposite occurs when submitted
Glauber dynamics. When more complex systems are a
lyzed with heat bath dynamics, more than two dynami
phases are usually found, where only a few of them are c
related with thermodynamical phases~see @11# and refer-
ences therein!. In particular, for spin glasses in three and fo
dimensions@10#, three different dynamical regimes were o
tained, as occurred when the autocorrelation was analy
For low temperatures, the final damage is non-null and
value depends on the initial Hamming distance. For interm
diate temperatures, the damage still spreads, but its
value is independent on the initial damage. Finally, for hi
temperature the final damage is always zero. While the lo
dynamical transition temperature seems to agree with
equilibrium one (Tg) separating the spin glass and the pa
magnetic phases, it is not clear whether the upper transi
temperature coincides with the pure ferromagnet transi
1410 © 1998 The American Physical Society
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57 1411DYNAMICAL PROPERTIES OF THE HYPERCELL SPIN- . . .
temperature or with the frustrated percolation tempera
~surprisingly, a similar behavior for the damage was repor
for the two-dimensional spin-glass model, which does
present a nonzero-temperature spin-glass phase!. On the
other hand, when the SK model was studied a structure w
only two phases was found, with the dynamical critical te
perature in good agreement with the thermodynamical o
The final damage now isalwaysnonzero, independently o
the temperature. In the spin-glass phase the final dam
depends on the initial Hamming distance, while in the pa
magnetic phase it does not. Furthermore, in the hi
temperature phase the damage decays as a power la
temperature increases. All these results indicate a big dif
ence in the time behavior of the damage between short-ra
and mean-field~infinite-dimensional! models. The aim of
this work is precisely to analyze how the damage pas
from one behavior to the other as dimensionality increas
Since such a study cannot be carried out with the usual
percubic lattice we use the more efficient hypercell mode

This paper is organized as follows. In Sec. II we introdu
in more detail the hypercell model and describe the spre
ing of damage technique. In Sec. III we present the res
for different dimensions. In Sec. IV finite-size effects a
discussed. Finally, in Sec. V we discuss the main conc
sions of the paper.

II. MODEL AND METHOD

The model consists of a single hypercubic cell in dime
sion D with an Ising spin variableSi561 associated with
each of its 2D corners. Each spin interacts with itsD nearest
neighbors through the Hamiltonian

H52(̂
i j &

Ji j SiSj , ~1!

where^ i j & denotes nearest neighbors and theJi j are chosen
accordingly to the probability distribution

PJ~Ji j !5
1

2
d~Ji j 2J!1

1

2
d~Ji j 1J!. ~2!

Here we have takenJ51/D1/2 to normalize extensive quan
tities.

The method consists of simulating the time evolution
the system through a heat bath Monte Carlo process.
spins are sequentially updated with the rule

Si~ t11!5H 11 with probability 1
2 $11tanh@hi~ t !#%

21 with probability 1
2 $12tanh@hi~ t !#%,

~3!

wherehi5( iÞ j
N Ji j Si(t) is the local field in sitei at time t.

For a given disorder configuration$Ji j % we choose two
different initial states$Si

A% and$Si
B% and let both evolve with

the same thermal noise, i.e., by using the same random
quence. We then measure the time evolution of the Ha
ming distance ordamagebetween them, defined as

dh~ t !5
1

4N(
i

N

@Si
A~ t !2Si

B~ t !#2. ~4!
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For each temperature we calculate the time average of
damagê dh& over 10 000 Monte Carlo steps~MCS!, defined
by

^dh&5

(
t

dh~ t !P~ t !

(
t

P~ t !

. ~5!

Here P(t) is the probability that the two replicas do no
become identical at timet @10#. Note that since we use th
same random sequence for updating both replicas, if at
time t they become identical~i.e., they meet in the phas
space!, they will continue to be identical for all subseque
times. This procedure was repeatedM times (M depending
on D and T) in order to obtain a configurational averag
^dh& of the damage over different coupling constants, init
conditions, and random number sequences.

In the next section we will study the influence of th
dimensionalityD and the initial damage between the tw
replicasdh(0) in the long-time behavior of the Hammin
distance. This will allow us to characterize different dynam
cal behaviors as a function of the temperature of the sys
and analyze their possible relationships with the thermo
namical phases.

III. RESULTS

We start this section by describing the behavior of t
model for dimensionD58. In Fig. 1 we show the Hamming
distance as a function of temperature for three different
tial damages, namely,dh(0)50.1, 0.5 and 1.

Observe that the system displays three different dyna
cal regimes:~a! For low temperatures (T,T1

8) we observe
that ^dh& is non-null and its value depends on the initi
damage~it increases as the initial damage increases!, ~b! for
intermediate temperatures (T1

8,T,T2
8) the system is char-

acterized by a single value of^dh& independent of the initial
damage, and~c! for high temperatures (T.T2

8) the Ham-
ming distancê dh& is always zero. This behavior is simila
to the one observed by Derrida and Weisbuch@10# in the

FIG. 1. ^dh& vs temperature forD58 and three different initial
damages:dh(0)51 ~triangles!, dh(0)50.5 ~squares!, and dh(0)
50.1 ~circles!.
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1412 57P. M. GLEISER AND F. A. TAMARIT
three-dimensional Edwards-Anderson model and diff
from that observed on the Sherrington-Kirkpatrick model,
described in the Introduction. As we will show soon, t
same qualitative behavior was also observed forD56, 10,
and 15.

Next we characterize each phase by the temporal beha
of both P and^dh&. In Fig. 2 we show the behavior ofP(t)
and ^dh&(t) for T50.52 ~the low-temperature phase!, with
dh(0)51. After suffering an exponential decay to a val
close to 0.5~a similar behavior was observed by Arcange
@12# for the EA model! the Hamming distancêdh&(t) grows
slowly, while P(t) decays slowly too. In Fig. 3 we show th
same results in a double logarithmic plot, from which it fo
lows that after an initial transient of about 1000 MCS bo
quantities vary with a power-law behaviorP(t)'t2d ~with
d'0.258) and̂ dh&(t)'tg ~with g'0.047). We have also
found that these exponents depend on the temperature o
system, although a more careful analysis of such depend
should be done with better statistics and for different te
peratures in order to confirm these results.

This behavior can be understood in terms of the pha
space structure of the system. If, as happens in the SK mo
the phase space has valleys separated by a wide distrib

FIG. 2. Temporal behavior ofP(t) and ^dh&(t) for D58 and
dh(0)51. The average was calculated over 1000 different samp

FIG. 3. ^dh& andP(t) as a function oft on a double logarithmic
scale forD58 andT50.52 ~in the low-temperature phase!.
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of Hamming distances, then the replicas that are close
each other become identical faster than those that are fa
apart. As time goes on,̂dh& takes into account only thos
replicas that are far apart and, as a consequence, it gr
This indicates that bigger energy barriers separate val
that are further apart. Since we are working with small s
tems N5256, these barriers can be crossed for long tim
such as the ones we considered (t510 000).

Next we make a similar study in the intermediate pha
In Fig. 4 we plot the curve ln@2lnP(t)# vs ln t for T51.41,
which, for a wide range of values oft, can be very well fitted
by a linear function indicating a stretched exponential de
of P(t). The Hamming distance presents a different behav
since it remains constant as time flows andP(t) decays. For
long times^dh& displays big fluctuations, which appear as
consequence of the poor statistics~note that only a small
number of replicas have survived for such long times!. These
results accept three different interpretations:~i! The system
has a phase-space structure with multiple valleys but al
them equidistant;~ii ! the system has only two valleys, like
ferromagnet; and~iii ! the phase space is almost flat as
function of the free energy, so the two replicas wand
through a phase space~represented by a hypercube of dime
sion 22D

) and do not find themselves due to its high dime
sionality. In the first two hypotheses, the faster decay ofP(t)
indicates that the valleys are not mutually impenetrable. I
probable then that in this paramagnetic phase the sys
separates regions in phase space~valleys! that are accessible
to each other.

Finally, in the high-temperature phase (T.T2
6) all the

replicas become zero in a few MCS and bothP(t) and^dh&
decay exponentially.

These results are very important since~i! P(t) has a tem-
poral behavior similar to the one found in@4#, indicating the
possibility of a close relationship between the phases fo
with spreading of damage and those studied through the
tocorrelation functionq(t), and ~ii ! they show that the hy-
percell model in dimensionD58 is similar to the three- and
four-dimensional EA models not only in their static prope
ties ~as studied by Parisiet al. @6#! but alsoin their dynami-
cal behavior. The same detailed study was performed

s.
FIG. 4. ln(2ln^dh&) and ln@2lnP(t)# for D58 andT51.41 ~in

the intermediate phase!.
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57 1413DYNAMICAL PROPERTIES OF THE HYPERCELL SPIN- . . .
D56 and the same qualitative behavior was observed fo
the quantities.

In dimension D510 a different dynamical behavio
emerges. In considering the^dh& vs T plot presented in Fig.
5, we see that the system basically displays the same t
regimes found inD58. Nevertheless, a more detailed ana
sis of the dependence ofP and ^dh& with time, showed in
Fig. 6, reveals different features. Now, in both the interm
diate and the lower temperature phasesP(t)51 for all times
considered (t,10 000), while^dh& keeps a constant valu
~after an initial fast exponential decay!. The only difference
resides in the dependence on the initial damage show
Fig. 5.

The difference between these phases can be better
served in Fig. 7, where we present the histograms of H
ming distances int5100 for T50.35 andT51.92, respec-
tively, with initial damagedh(0)51. We verify that the
low-temperature phase still presents a wide distribution,
dicating a complex structure such as the one described
replica symmetry breaking. On the other hand, in the in
mediate regime the distribution is narrow, indicating a b
havior that corresponds to one of the three hypotheses m

FIG. 5. ^dh& vs temperature forD510 and three different initial
damages:dh(0)51 ~triangles!, dh(0)50.5 ~squares!, and dh(0)
50.1 ~circles!.

FIG. 6. ^dh& vs t for D510, dh(0)51, and T50.35 ~low-
temperature phase! andT51.92 ~intermediate phase!.
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for theD58 case. It is worth mentioning that the histogram
present the same qualitative behavior in all dimensions s
ied, indicating a drastic change in the phase-space struc
at the critical temperatureT1.

The same analysis has been done forD515 and in Fig. 8
we present̂ dh& vs T with the three usual phases. The tem
poral analysis displays the same behavior in the differ
phases.

Finally, in Table I we present the values of the critic
temperaturesT1

D and T2
D obtained for the different dimen

sions studied in this paper. Note that asD increases,T1
seems to approach, as expected, the value 1, which co
sponds to the critical static temperature of the Sherringt
Kirkpatrick model. Unfortunately, as far as we know, th
static critical temperatures of the spin-glass paramagn
transition for finiteD have never been studied, so it is im
possible to compare static and dynamical transition temp
tures. If, as happens with all Ising-like spin models studied
the literature with heat bath dynamics, these temperatu
coincide, we can then conclude that the convergence of
critical temperatureT1 is very slow. ConcerningT2, it also

FIG. 7. Histogram of Hamming distances att5100 with
dh(0)51 for D510 and ~a! T50.35 ~in the low-temperature
phase! and ~b! T51.92 ~in the intermediate phase!.

FIG. 8. ^dh& vs temperature forD515 and two different initial
damages:dh(0)51 ~circles! anddh(0)50.5 ~squares!.
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1414 57P. M. GLEISER AND F. A. TAMARIT
increases, but higher dimensions should be considered in
der to extrapolate theD→` behavior. It is important here to
stress that, at least forD515, we have not found a phas
diagram that resembles the one obtained in the study of
Sherrington-Kirkpatrick model, namely, a two-phase str
ture with the critical dynamical temperature in good agr
ment with the static one. On the contrary, for all the dime
sions considered in this paper, we have shown that
system has a dynamical phase diagram similar to the
observed in the Edwards-Anderson model.

IV. FINITE-SIZE EFFECTS

Concerning finite-size effects, it is worth mentioning th
our model does not admit such an analysis since in this c
the dimensionality determines the size of the syst
N52D. It is in that sense that one says that this is a me
field-like version that recovers the SK model forD→`.
Nevertheless, we have performed some numerical sim
tions for small lattices in dimensions 8 and 10 in order
observe the behavior of the dynamics in the hypercubic
tice model. Since the results are basically the same for b
dimensions we only present those obtained for dimensio
In Fig. 9 we present the Hamming distance with initial da
age 1 as a function ofT in dimension 8 both for the hyperce
and for a hypercubic lattice of linear size 2. What we obse
is that, as soon as we leave the hypercell version and e
the hyperlattice the system has a completely different beh
ior, which resembles the one found for the Sherringto
Kirkpatrick model. We want to stress that these behavi
should not be compared with each other because the hy

FIG. 9. ^dh& vs temperature forD58 and dh(0)51 for the
hypercell model~empty circles! and the hypercubic lattice with lin
ear size 2~full squares!.

TABLE I. Values of the critical temperatureT1
D and T2

D ob-
tained for different dimensionsD.

D T1
D T2

D

6 0.6560.04 1.860.2
8 0.6660.04 1.8660.09
10 0.7460.08 2.1760.08
15 0.7960.01 3.2560.05
or-
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cell is supposed to reflect the dynamics of aD54 hyperlat-
tice, which is believed to be below the upper critical dime
sion of the Edwards-Anderson model. On the other hand,
hyperlattice with D58, even for small sizes, clearly re
sembles the dynamical phase structure of the SK model, w
a paramagnetic phase in which the damage never vanis

This can be seen more clearly in Fig. 10, where we p
the Hamming distance with initial damage 1 for the hyp
lattice in dimension 8 with linear sizes 2 and 4. Observe t
even for very high temperatures the damage does not van
In the inset plot we can see the ln-ln plot from which clea
emerges a power-law decay of^dh& as a function ofT, as
Derrida found for the SK model.

Although we cannot go beyond these small sizes, due
the huge numerical cost required, this simple finite-size st
allows us to conclude that the hypercell model, even bein
mean-field-like model, and for relatively small dimensio
~where finite-size effects are surely very important! re-
sembles more the behavior observed for hyperlattices in
mensionD/2 (D54 in our case! than the one expected fo
the mean-field version. On the other hand, we verify that
soon as we leave the hypercell and consider small latti
the system behaves as expected for a hyperlattice with
mensions higher than the upper critical dimension.

V. CONCLUSIONS

In this work we have applied the damage spreading te
nique to the hypercell Ising spin-glass model in order
study its dynamical behavior and the influence of dimensi
ality. As was stressed in the Introduction, previous stud
had found different dynamical phase diagrams for the
and the SK model. While the former presented three differ
regimes~suggesting a correlation with the temporal decay
the autocorrelation function!, the latter presented a uniqu
phase transition at a temperature compatible with the s
glass paramagnet static transition. Since the SK mode
recovered as theD→` version of the EA model, we studie
the effect of increasing the dimensionality in the dynami
behavior of the system in the hope of finding some criti

FIG. 10. ^dh& vs temperature forD58 anddh(0)51 for the
hypercubic lattice with linear sizesL52 ~empty circles! and L
54 ~empty squares!. In the inset ln̂dn& vs lnT for L54, from
which one observes a power-law decay.
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57 1415DYNAMICAL PROPERTIES OF THE HYPERCELL SPIN- . . .
dimension above which the system displays the mean-fi
dynamical phase diagram.

The phase diagram, for all dimensions studied, presen
three-phase structure similar to that obtained for the
model with D53 and 4, namely, a low-temperature pha
that displays dependence with the initial damage, an inter
diate phase where the damage spreads but its final valu
independent of the initial damage, and a high-tempera
phase where the damage decays exponentially to zero. W
the lower critical dynamical temperature seems to conve
to the SK static temperature, for the upper critical tempe
ture we were not able to extrapolate its behavior~we are
probably far from an asymptotic regime!. This means that, a
least forD515, we are still far from the SK regime. Furthe
simulations with higher dimensions would be required, b
the computation time needed exceeds our numerical ca
ity.

When one considers the temporal behavior of the quan
P(t) for different dimensions two interesting conclusio
can be extracted.

~i! There is a drastic change in the behavior ofP(t) for
D<8 andD>10. In the former case,P(t) displays a decay
similar to that observed for the autocorrelation function
ld

a
A

e-
is

re
ile
e
-

t
c-

ty

the EA model @4# characterizing three different phase
power-law decay forT,T1

D , stretched exponential decay fo
T1

D,T,T2
D , and exponential decay forT.T2

D . In the last
case (D>10), P(t) is constant and equals 1 in the low- an
intermediate-temperature regimes and decays exponen
in the high-temperature phase (T.T2

D).
~ii ! The detailed analysis of the histograms of Hammi

distances reveals that the low-temperature phase is chara
ized by a wide distribution, as expected in a multivall
phase diagram, for all the dimensions considered. This st
ture resembles, at least qualitatively, the one found in the
model. On the other hand, in the intermediate phases
always found narrow distributions of the Hamming di
tances. Note that in this regime the final distance is alw
nonzero independently of the initial damage. This is also t
for vanishing small initial damages, meaning that in th
phase the heat bath Monte Carlo dynamics is truly chao
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