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Dynamical properties of the hypercell spin-glass model
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The spreading of damage technique is used to study the dynamical phase diagram of the spin-glass hyper-
cubic cell model in a heat bath Monte Carlo simulation. Since the hypercubic cell in dimerBi@m@ the
hypercubic lattice in dimensioD resemble each other closely at finite dimensions and both converge to a
mean field when dimension goes to infinity, we can study the effects of dimensionality on the dynamical
behavior of spin glassepS1063-651X98)11302-§

PACS numbeis): 05.50:+q, 75.50.Lk, 71.55.Jv

I. INTRODUCTION 1991 Parisi, Ritort, and RU{6] introduced thehypercubic
cell mode] which allows a very efficient treatment of high-
The spin-glass theory has been one of the most difficultimensional models, at least when compared to hypercubic
problems treated by statistical mechanics during the past twiattice models. It consists of a unique cubic cell of dimension
decades. Despite its value in the field of solid-state physicd) with an Ising spin variable associated with each of #s 2
its study has also contributed to develop techniques that noworners. Despite its simplicity, one expects that its behavior
apply to a wide range of fields such as optimization probfor dimension D resembles, at least qualitatively, that ob-
lems, neural networks, and other complex systghis served in aD-dimensional hypercubic lattice since both
The microscopic approach to spin glasses is attributed tehare the same connectivily. Furthermore, folD—c the
Edwards and Andersol2], whose model basically consists hypercell model recovers the mean-field SK model.
of an Ising system with random positive and negative ex- This approach has been used in the past few years to
change couplings. Until now only its mean-field version,analyze both dynamical and statical consequences of dimen-
known as the Sherrington-KirkpatricfSK) model [3] has  sionality in the spin-glass phase of different modéls9]. In
been exactly solved, but unfortunately its solution requireshis work we apply the damage spreading method to the
the sophisticated replica trick. Under such limitations, Montehypercell Ising spin-glass model simulated with a heat bath
Carlo numerical simulations have become one of the mostlonte Carlo dynamics. This technique basically consists of
applied techniques in the field. At the same time, it is notmeasuring the time evolution of the Hamming distance be-
clear at the moment whether one should expect that the spitween two initially different configurations submitted to the
glass phase of the mean-field SK model resembles the bgame thermal noise, i.e., updated with the same random num-
havior of the spin-glass phase of the low-dimensionber sequence. The dependence of the damage and other re-
Edwards-AndersofEA) model. lated quantities on temperature, time, initial conditions, and
For many years there has been great controversy oather relevant parameters leads to a dynamical phase dia-
whether the spin-glass transition is either of thermodynamigram of the model.
cal or dynamical nature. However, numerical simulatiptis In general, this phase diagram strongly depends on the
and phenomenological scaling arguments at zero temperatukgonte Carlo dynamics used in the numerical simulation. In
[5] strongly suggest the existence of a true thermodynamicalarticular, for the two- and three-dimensional Ising ferro-
phase transition. From a dynamical point of view, a verymagnet one finds that the dynamical transition coincides with
careful numerical study of the time decay of the autocorrethe static one when the system is submitted to heat bath
lation functionqg(t) has shown that the system displays threedynamics, while the opposite occurs when submitted to
different dynamical regimes: Above the Curie poiig of  Glauber dynamics. When more complex systems are ana-
the nonrandom Ising model, the autocorrelation decays exXyzed with heat bath dynamics, more than two dynamical
ponentially; betwee ¢ and the spin-glass temperatufg  phases are usually found, where only a few of them are cor-
the autocorrelation function has a stretched exponential beelated with thermodynamical phasésee[11] and refer-
havior with temperature-dependent exponents; and finally, irnces therein In particular, for spin glasses in three and four
the spin-glass phase only power-law decay is observed at alimensiong 10], three different dynamical regimes were ob-
times scales. tained, as occurred when the autocorrelation was analyzed.
Since the SK model can be understood as the infiniteFor low temperatures, the final damage is non-null and its
dimensional version of the EA model, it is desirable to bevalue depends on the initial Hamming distance. For interme-
able to study the effects of dimensionality on both the statidiate temperatures, the damage still spreads, but its final
and dynamical properties of the system, even if such awalue is independent on the initial damage. Finally, for high
analysis should be limited to numerical considerations. Inemperature the final damage is always zero. While the lower
dynamical transition temperature seems to agree with the
equilibrium one TT,) separating the spin glass and the para-
*Electronic address: pgleiser@fis.uncor.edu magnetic phases, it is not clear whether the upper transition
"Electronic address: tamarit@fis.uncor.edu temperature coincides with the pure ferromagnet transition
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temperature or with the frustrated percolation temperature ' ' ' '
(surprisingly, a similar behavior for the damage was reported <dh> a

for the two-dimensional spin-glass model, which does not 062 3 —
present a nonzero-temperature spin-glass phadae the
other hand, when the SK model was studied a structure with
only two phases was found, with the dynamical critical tem- 04l o @ ]
perature in good agreement with the thermodynamical one. o

The final damage now ialwaysnonzero, independently of i
the temperature. In the spin-glass phase the final damage 02| o ]
depends on the initial Hamming distance, while in the para- ' a

magnetic phase it does not. Furthermore, in the high- - ° .
temperature phase the damage decays as a power law as T
temperature increases. All these results indicate a big differ- 0'00 0 05 10 15 20 25
ence in the time behavior of the damage between short-range ) ) ’ ' ' )
and mean-field(infinite-dimensiongl models. The aim of
this work is pre_C|ser to analyze h(.)W the_ damage PASSES pig. 1. (dh) vs temperature fob =8 and three different initial
frgm one behavior to the other as .dlmensm.nahty INCreasesy, magesdh(0)=1 (triangles, dh(0)=0.5 (squares and dh(0)
Since such a study cannot be carried out with the usual hyéo.l(circles).

percubic lattice we use the more efficient hypercell model.

This paper is organized as follows. In Sec. Il we introducegq, oach temperature we calculate the time average of the

in more detail the hypercell model and describe the Spreaddamagem over 10 000 Monte Carlo stegbICS), defined
ing of damage technique. In Sec. Il we present the result ’

T

for different dimensions. In Sec. IV finite-size effects are y
discussed. Finally, in Sec. V we discuss the main conclu-
sions of the paper. > dh(t)P(t)
_— t
Il. MODEL AND METHOD <dh>: . ®
' P(t
2 P(D)

The model consists of a single hypercubic cell in dimen-
sion D with an Ising spin variablé&; =+ 1 associated with
each of its 2 corners. Each spin interacts with Bsnearest
neighbors through the Hamiltonian

Here P(t) is the probability that the two replicas do not
become identical at timeé [10]. Note that since we use the
same random sequence for updating both replicas, if at any
time t they become identicali.e., they meet in the phase
H= —E JiiSS, (1) spacg, they will continue to be identical for all subsequent
(ij) times. This procedure was repeafddtimes (M depending
on D andT) in order to obtain a configurational average
(dh) of the damage over different coupling constants, initial
conditions, and random number sequences.
1 1 In the next section we will study the influence of the
Py(Jij) = 5003 =)+ 5 8(J;; +J). (2 dimensionalityD and the initial damage between the two
replicasdh(0) in the long-time behavior of the Hamming
Here we have taked=1/D? to normalize extensive quan- distance. This will allow us to characterize different dynami-
tities. cal behaviors as a function of the temperature of the system
The method consists of simulating the time evolution ofand analyze their possible relationships with the thermody-
the system through a heat bath Monte Carlo process. Theamical phases.
spins are sequentially updated with the rule

where(ij) denotes nearest neighbors and dheare chosen
accordingly to the probability distribution

lll. RESULTS
+1 with probability 3 {1+tanHh;(t
Si(t+1)= with probability 7 {1+ tanfhi(t) ]} We start this section by describing the behavior of the
—1 with probability 3 {1—tant h;(t)]}, model for dimensio® =8. In Fig. 1 we show the Hamming

(3) distance as a function of temperature for three different ini-
tial damages, namelgh(0)=0.1, 0.5 and 1.
whereh;=X=1,,J;;S(t) is the local field in sitd at timet. Observe that the system displays three different dynami-
For a given disorder configuratiofd;;} we choose two cal regimes:(@) For low temperaturesT<T%) we observe
different initial state§S"} and{S"’} and let both evolve with  that (dh) is non-null and its value depends on the initial
the same thermal noise, i.e., by using the same random seamage(it increases as the initial damage increasés for
guence. We then measure the time evolution of the Hamintermediate temperature§i<T<Tg) the system is char-

ming distance odamagebetween them, defined as acterized by a single value ¢fih) independent of the initial
LN damage, andc) for high temperaturesK>T§) the Ham-
dh(t) = — t)— SB(1)12. 4 ming distancgdh) is always zero. This behavior is similar
) 4N2‘ (S-S ()] @ to the one observed by Derrida and Weisbiizh] in the
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FIG. 2. Temporal behavior dP(t) and(dh)(t) for D=8 and FIG. 4. In(-In(dh)) and If—InP(t)] for D=8 andT=1.41(in

dh(0)=1. The average was calculated over 1000 different sampleghe intermediate phase

;hree-gimensional Edvxr/1ardsr—1AnQerson _r’r:(odel' Iimd di}‘fer%f Hamming distances, then the replicas that are closer to
rom that o_bserved on the S err|ngton-K|_r patrick model, 8%ach other become identical faster than those that are farther
described in the Introduction. As we will show soon, theapart As time goes or{dh) takes into account only those

same qualitative behavior was also observedor 6, 10, replicas that are far apart and, as a consequence, it grows.

and 15. This indicates that bigger energy barriers separate valleys
Next we characterize each phase by the temporal behavicglﬂ1 99 gy . P y
at are further apart. Since we are working with small sys-

of both P and({dh). In Fig. 2 we show the behavior &(t) : ;
and (dh)(t) for T=0.52 (the low-temperature phasevith tems N=256, these barrlers can be crossed for long times
dh(0)=1. After suffering an exponential decay to a value SUch as the ones we considerée- (0 000). ,
close to 0.5a similar behavior was observed by Arcangelis Next we make a similar study in the intermediate phase.
[12] for the EA model the Hamming distancgdh)(t) grows N Fig. 4 we plot the curve [-InP(t)] vs Int for T=1.41,
slowly, while P(t) decays slowly too. In Fig. 3 we show the Which, for a wide range of values bfcan be very well fitted
same results in a double logarithmic plot, from which it fol- by a linear function indicating a stretched exponential decay
lows that after an initial transient of about 1000 MCS bothof P(t). The Hamming distance presents a different behavior
guantities vary with a power-law behavi®(t)~t=? (with  since it remains constant as time flows @) decays. For
5~0.258) and(dh)(t)~t” (with y~0.047). We have also long times(dh) displays big fluctuations, which appear as a
found that these exponents depend on the temperature of t§ensequence of the poor statisticete that only a small
system, although a more careful analysis of such dependen&&mber of replicas have survived for such long tim@hese
should be done with better statistics and for different temJ€sults accept three different interpretatiofi$:The system
peratures in order to confirm these results. has a phase-space structure with multiple valleys but all of
This behavior can be understood in terms of the phasethem equidistant(ii) the system has only two valleys, like a
space structure of the system. If, as happens in the SK moddfrromagnet; andiii) the phase space is almost flat as a
the phase space has valleys separated by a wide distributiénction of the free energy, so the two replicas wander
through a phase spa¢epresented by a hypercube of dimen-
sion 22D) and do not find themselves due to its high dimen-
sionality. In the first two hypotheses, the faster decalp @)
indicates that the valleys are not mutually impenetrable. It is
| <dh>(t) probable then that in this paramagnetic phase the system
separates regions in phase spaadleys that are accessible
to each other.
P(t) Finally, in the high-temperature phas&@*T3) all the
K replicas become zero in a few MCS and bétft) and(dh)
decay exponentially.
| These results are very important sin€eP(t) has a tem-
poral behavior similar to the one found [id], indicating the
possibility of a close relationship between the phases found
0.2 . . M with spreading of damage and those studied through the au-
1000 6000 tocorrelation functiomy(t), and (ii) they show that the hy-
t percell model in dimensio® =8 is similar to the three- and
four-dimensional EA models not only in their static proper-
FIG. 3. (dh) andP(t) as a function of on a double logarithmic  ties (as studied by Parigit al. [6]) but alsoin their dynami-
scale forD=8 andT=0.52(in the low-temperature phase cal behavior. The same detailed study was performed for

1.0 - =
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FIG. 5. (dh) vs temperature fob = 10 and three different initial
damagesdh(0)=1 (triangles, dh(0)=0.5 (squares anddh(0)

FIG. 7. Histogram of Hamming distances &t100 with
=0.1(circles.

dh(0)=1 for D=10 and(a) T=0.35 (in the low-temperature

phas¢ and (b) T=1.92(in the intermediate phase

D=6 and the same qualitative behavior was observed for all

the quantities. for theD =8 case. It is worth mentioning that the histograms
In dimension D=10 a different dynamical behavior present the same qualitative behavior in all dimensions stud-

emerges. In considering tfeh) vs T plot presented in Fig. ied, indicating a drastic change in the phase-space structure

5, we see that the system basically displays the same threg the critical temperaturg,.

regimes found irD=8. Nevertheless, a more detailed analy- The same analysis has been doneDet 15 and in Fig. 8

sis of the dependence & and(dh) with time, showed in  we present{dh) vs T with the three usual phases. The tem-

Fig. 6, reveals different features. Now, in both the interme-poral analysis displays the same behavior in the different

diate and the lower temperature phaBgs) =1 for all times  phases.

considered (<10 000), while(dh) keeps a constant value  Finally, in Table | we present the values of the critical

(after an initial fast exponential decayThe only difference  temperaturesT? and T; obtained for the different dimen-

resides in the dependence on the initial damage shown isions studied in this paper. Note that BsincreasesT;

Fig. 5. seems to approach, as expected, the value 1, which corre-
The difference between these phases can be better ofponds to the critical static temperature of the Sherrington-

served in Fig. 7, where we present the histograms of HamKirkpatrick model. Unfortunately, as far as we know, the

ming distances in=100 for T=0.35 andT=1.92, respec- static critical temperatures of the spin-glass paramagnetic

tively, with initial damagedh(0)=1. We verify that the transition for finiteD have never been studied, so it is im-

low-temperature phase still presents a wide distribution, inpossible to compare static and dynamical transition tempera-

dicating a complex structure such as the one described hyires. If, as happens with all Ising-like spin models studied in

replica symmetry breaking. On the other hand, in the interthe literature with heat bath dynamics, these temperatures

mediate regime the distribution is narrow, indicating a be-coincide, we can then conclude that the convergence of this

havior that corresponds to one of the three hypotheses madgitical temperaturél; is very slow. Concerning,, it also
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FIG. 6. (dh) vs t for D=10,dh(0)=1, and T=0.35 (low-
temperature phag@and T=1.92 (intermediate phage

FIG. 8. (dh) vs temperature fob =15 and two different initial
damagesdh(0)=1 (circles anddh(0)= 0.5 (squarep
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TABLE I. Values of the critical temperatur&, and TS ob- 0.4 . . . .
tained for different dimensions. 2
<dh> |
D TlD T? 03l Ln<dh> ‘\-\,\,\N_. |
1 |
6 0.65+0.04 1.8:0.2 I T
8 0.66-0.04 1.86-0.09
10 0.74+0.08 2.170.08 02 1
15 0.79:0.01 3.25£0.05 8
o
0.1 9 0 g g ° o o n
increases, but higher dimensions should be considered in or- -
der to extrapolate thB — oo behavior. It is important here to ool 1 v

stress that, at least fdd =15, we have not found a phase
diagram that resembles the one obtained in the study of the
Sherrington-Kirkpatrick model, namely, a two-phase struc- T

ture with the critical dynamical temperature in good agree- FIG. 10. (dh) vs temperature foD=8 anddh(0)=1 for the
”.‘e”t with the stath one. On the contrary, for all the dlrnen'hypercubic lattice with linear sizes=2 (empty circleg and L
sions considered in this paper, we have shown that the’, (empty squares In the inset Iidn) vs InT for L=4, from
system has a dynamical phase diagram similar to the ongni-h one observes a power-law decay. '
observed in the Edwards-Anderson model.

cell is supposed to reflect the dynamics dba 4 hyperlat-
IV. FINITE-SIZE EFFECTS tice, which is believed to be below the upper critical dimen-
o o L sion of the Edwards-Anderson model. On the other hand, the
Concerning finite-size effects, it is worth mentioning thath perlattice withD=8, even for small sizes, clearly re-

our m(_)del dpes UOt admit Sl_JCh an analy5|s since in this ca mbles the dynamical phase structure of the SK model, with
the glmeps!onal|ty determines the size of _th_e system, paramagnetic phase in which the damage never vanishes.
N=2". It is in that sense that one says that this is a mean- This can be seen more clearly in Fig. 10, where we plot
f'eld'“kﬁ Iver5|on ﬂ;]at recovfers thde SK model f.DrTOO_‘ Ithe Hamming distance with initial damage 1 for the hyper-
Nevertheless, we have performed some numerical simulgzyice in dimension 8 with linear sizes 2 and 4. Observe that

tlct))ns for im%” Lattl_ces :‘n hdm:jensmns 8 at:]d %]0 In orggrltoeven for very high temperatures the damage does not vanish.
observe the behavior of the dynamics in the hypercubiC laty, 1he jnset plot we can see the In-In plot from which clearly

tice model. Since the results are basically the same for bot merges a power-law decay @ih) as a function off, as
dimensions we only present those obtained for dimension &errida found for the SK model '
In Fig. 9 we present the Hamming distance with initial dam- Although we cannot go beyond these small sizes, due to

agelasa function.c'x'f in.dimen.sion 8 .bOth for the hypercell the huge numerical cost required, this simple finite-size study
and for a hypercubic lattice of linear size 2. What we Observeallows us to conclude that the hypercell model, even being a

is that, as soon as we leave the hypercell version and ent@to, fie|d-like model, and for relatively small dimensions
the hyperlattice the system has a completely different behav(

. hich bl h tound for the Sherri where finite-size effects are surely very imporjame-
lor, which resembles the one found for the Sherringtongepies more the behavior observed for hyperlattices in di-
Kirkpatrick model. We want to stress that these behavior

hould b d with h other b he h ¥nensionD/2 (D=4 in our casgthan the one expected for
should not be compared with each other because the NYP&e mean.-field version. On the other hand, we verify that, as

soon as we leave the hypercell and consider small lattices,

0.8 T T the system behaves as expected for a hyperlattice with di-
L mensions higher than the upper critical dimension.
<dh> [¢]
060 © .
| = V. CONCLUSIONS
04 L o i In this work we have applied the damage spreading tech-
Q nigue to the hypercell Ising spin-glass model in order to
- o study its dynamical behavior and the influence of dimension-
02 L 5 . i ality. As was stressed in the Introduction, previous studies
o e ey had found different dynamical phase diagrams for the EA
" °s and the SK model. While the former presented three different
0.0 s | . olo—od regimes(suggesting a correlation with the temporal decay of
0 1 2 the autocorrelation functionthe latter presented a unique

phase transition at a temperature compatible with the spin-
glass paramagnet static transition. Since the SK model is
FIG. 9. (dh) vs temperature foD=8 anddh(0)=1 for the  recovered as thB—« version of the EA model, we studied
hypercell modelempty circle$ and the hypercubic lattice with lin- the effect of increasing the dimensionality in the dynamical
ear size Zfull squares. behavior of the system in the hope of finding some critical
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dimension above which the system displays the mean-fielthe EA model [4] characterizing three different phases:
dynamical phase diagram. power-law decay folf <TP | stretched exponential decay for
The phase diagram, for all dimensions studied, presentsa?<T<T2D, and exponential decay fdf>T5_ In the last
three-phase structure similar to that obtained for the EAcase p=10), P(t) is constant and equals 1 in the low- and
model withD=3 and 4, namely, a low-temperature phasejntermediate-temperature regimes and decays exponentially
that displays dependence with the initial damage, an intermen, the high-temperature phasg¥T5).
diate phase where the damage spreads but its final value is (jj) The detailed analysis of the histograms of Hamming
independent of the initial damage, and a high-temperaturgjstances reveals that the low-temperature phase is character-
phase where the damage decays exponentially to zero. Whilgaq by a wide distribution, as expected in a multivalley
the lower critical dynamical temperature seems to converggnase diagram, for all the dimensions considered. This struc-
to the SK static temperature, for the upper critical temperayyre resembles, at least qualitatively, the one found in the SK
ture we were not able to extrapolate its behaviwe are  model. On the other hand, in the intermediate phases we
probably far from an asymptotic regiméhis means that, at gways found narrow distributions of the Hamming dis-
least forD =15, we are still far from the SK regime. Further tances. Note that in this regime the final distance is always
simulations with higher dimensions would be required, butyonzero independently of the initial damage. This is also true
the computation time needed exceeds our numerical capaggy vanishing small initial damages, meaning that in this

ity. ) ) _phase the heat bath Monte Carlo dynamics is truly chaotic.
When one considers the temporal behavior of the quantity

P(t) for different dimensions two interesting conclusions
can be extracted.
. . . . . ACKNOWLEDGMENTS
(i) There is a drastic change in the behaviorRgt) for
D=8 andD=10. In the former cas&?(t) displays a decay We gratefully acknowledge D. A. Stariolo and |. Camp-
similar to that observed for the autocorrelation function inbell for fruitful discussions.

[1] K. H. Fischer and J. A. HertSpin Glasse$Cambridge Uni- [6] G. Parisi, F. Ritort, and J. M. Rpl. Phys. A24, 5307(1991).

versity Press, Cambridge, 1993 [7] L. Cugliandolo and J. Kurchan, J. Phys.2X, 5749(1994).
[2] S. F. Edwards and P. W. Anderson, J. Phy%, B65(1975. [8] E. Marinari, G. Parisi, and F. Ritort, J. Phys28, 327(1995.
[3] D. Sherrington and S. Kirkpatrick, Phys. Rev. L&k, 1792 [9] D.Stariolo, e-print cond-mat/9607132.

(1975. [10] B. Derrida and G. Weisbuch, Europhys. Lett.657 (1987).
[4] A. T. Ogielski, Phys. Rev. Letb4, 928 (1985. [11] L. da Silva, F. A. Tamarit, and A. C. N. de Maga#fsa J. Phys.
[5] A. J. Bray and M. A. Moore, J. Phys. €7, L463 (1984); 17, A 30, 2329(1997.

L613(1984); A. J. Bray, Comments Condens. Matter Piy4.  [12] L. De Arcangelis, inCorrelations and Connectivifyedited by
21 (1988. H. E. Stanley and N. OstrowskKIluwer, Dordrecht, 1990



